
WHITE PAPER

Transforming DBL Applications

Distributed Computing

Contents

Executive summary 3

What is a distributed system? 4

 Benefits 4

 Industry trends 4

Introducing Synergex’s Streaming Integration Platform 5

 Event streaming with Apache Kafka 5

 Streaming Integration Platform advantages 5

 Other building blocks 6

 Harmony Core support 6

Distributed computing with the Streaming Integration Platform 7

 Phase 1: Leader with replicas 7

 Application transparency 8

 Change Data Capture 9

 Phase 2: Refactoring write operations 9

 Coordination in a distributed system 10

 Blue-green deployments 10

 Hardware considerations 11

Case study: Distributing the RCC application 12

 Initial state 13

 With the Streaming Integration Platform 13

 Transformation in action 14

Conclusion 15

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications3

Executive summary

As your business expands, your applications need to manage additional users,

a greater volume of data, more integrations, and broader geographic coverage.

Distributed computing is one way a modern so�ware system can extend its

capabilities and better process data, o�ering scalable, reliable, and e�icient

handling of complex tasks. This white paper explores the fundamentals of

distributed computing—its key characteristics and benefits and influential industry

trends—as well as how Synergex’s Streaming Integration Platform, which uses

the Apache Kafka protocol, specifically facilitates the transformation of a DBL

application to a distributed system. Our goal is to show how transitioning to a

distributed system can help your so�ware meet new demands e�ectively and

e�iciently.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications4

What is a distributed

system?

Benefits

A distributed system is a network of

independent computers that function as a

single coherent system to users. Tasks are

distributed across multiple machines that

communicate and coordinate with each other.

Key characteristics and benefits of distributed

systems include:

Concurrent components
Multiple parts operate across di�erent computers, communicating

via messages to seamlessly coordinate their actions.

Shared resources
Components share resources like databases and files, maintaining

consistent states across the entire system.

Scalability
Distributed systems can expand by adding more nodes, giving

them the ability to cover larger geographic areas and scale up or

down as needed.

Fault tolerance
As a result of redundancy and robust failure handling, distributed

systems remain operational despite failures.

Transparency
Users are able to interact with the system as if it were a single,

cohesive unit, regardless of the distributed nature of its

components.

Industry trends

Several key developments have

significantly increased the adoption

of distributed systems in the so�ware

industry:

Cloud computing. Platforms like AWS,

Azure, and Google Cloud have made

distributed computing more accessible,

allowing companies to deploy and

manage applications across multiple

locations a�ordably.

Microservices architecture. A

microservices approach breaks

applications into smaller, independent

services that communicate over a

network, enhancing scalability and

flexibility.

Big data and real-time processing. The

need to manage large data volumes

e�iciently makes distributed systems

ideal for big data processing and real-

time analysis.

Resilience and availability. The demand

for better fault tolerance and availability

can be met by spreading resources

across multiple servers or locations.

Distributed systems o�en allow data to

stay geographically closer to the user.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications5

Introducing Synergex’s Streaming

Integration Platform
The Streaming Integration Platform connects Synergex’s ISAM DBMS to Kafka queues

or “topics,” facilitating the conversion of a DBL application to a distributed system.

Event streaming with Apache

Kafka

Kafka is a highly acclaimed technology and

protocol that the Streaming Integration

Platform leverages to solve developer pain

points related to running centralized systems:

Kafka supports better application scalability

by allowing systems to expand across

multiple servers and regions, e�iciently

handling more users and higher data volumes

without performance loss. Load balancing

and horizontal scaling ensure consistent

performance as demand increases.

Kafka reduces costly and disruptive

production outages by providing robust data

replication and fault tolerance. If one server

fails, Kafka ensures that data is still available

from other servers, minimizing disruptions

and maintaining continuous system

operation.

Kafka manages transaction complexity

by serving as a centralized platform that

e�iciently distributes large volumes of data

across users and third-party applications.

This setup ensures that all parties can access

and process data simultaneously without

bottlenecks, supporting high concurrency and

integration flexibility.

Streaming Integration Platform

advantages

The Streaming Integration Platform achieves the

following:

Leverages existing code. Code rewrites are

generally not viable; they tend to be unsuccessful

and cost-prohibitive. Existing, time-tested DBL code

can be seamlessly integrated into this new solution.

Enables phased development and deployment.

Allows for incremental development and

deployment, rather than requiring large-scale

e�orts that could disrupt the entire organization.

Preserves application speed for the end user.

Maintains the speed and e�iciency of current

applications to ensure users can continue their work

e�ectively.

Provides user-friendly operations and diagnostics.

In a distributed system with multiple nodes,

manually logging and checking files to diagnose

issues would become cumbersome and ine�ective.

The Streaming Integration Platform provides

diagnostic tools to handle the increased complexity.

Works on-premises and in the cloud. The Streaming

Integration Platform is versatile, functioning both

on-premises and in the cloud.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications6

Other building blocks

Synergex uses the following products in its implementation of Kafka.

Coordinates and configures services, facilitates resource locking

between nodes, and distributes configuration data to individual nodes.

A faster, more e�icient alternative to Apache’s Kafka platform, using

the Kafka protocol with regular Kafka clients. It requires less hardware,

o�ers lower latency, and is easy to set up and manage.

A platform that simplifies creating, deploying, and running

applications using containers. (Containerizing is easy—it’s just a

Docker file away.)

Integrates an SSH client directly into a web browser, modernizing

access for users who rely on SSH or Telnet. It provides a browser-

based, interactive SSH terminal for managing systems directly through

the web.

O�ers an S3 compatible API for on-premises organizations, functioning

independently of AWS.

WebSSH2

SeaweedFS

Harmony Core support

The Streaming Integration Platform has a

number of features that are underpinned by

Synergex’s Harmony Core, a proven, open-source

framework for creating RESTful web services

APIs. For example, Harmony Core is used to wrap

and isolate legacy code that contains a lot of

global and static variables so it can run in multi-

threaded environments. Developers can also use

Harmony Core to incorporate third-party APIs

to enhance functionality and support new logic.

This integration ensures a more seamless and

e�icient handling of data across di�erent system

components.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications7

Distributed Computing with the Streaming

Integration Platform

Before taking advantage of distributed

computing, applications generally

run from a single node as in Figure 1.

Users interface with the application

via SSH and/or a RESTful web service,

and the application has direct access

to the data files.
Figure 1: Single-node architecture

(before distributed computing)

Phase 1: Leader with replicas

In the first phase, the developer implements a

leader node and one or more follower nodes.

All nodes have the same application, data files,

and Harmony Core RESTful web service. The

leader node can perform both read and write

Access to the application is primarily via SSH,

allowing users to interact directly with the leader

node. The application has direct file system

access, enabling operations on ISAM files that are

stored on the disk of each node. Write operations

on the leader are monitored through I/O hooks,

which capture data activity and send it to Kafka

using a replication agent.

operations, while the followers can only perform

reads. Developers will need to implement some

kind of routing between the users, the leader,

and the followers since some operations can

only be serviced by the leader.

The operation is then processed by Kafka

and sent to the follower nodes, which stay

synchronized with the leader through their own

replication agents. Unlike the leader, the follower

nodes primarily handle read operations, as they

don’t manage ISAM file locks. This configuration

allows the follower nodes to serve data requests

that don’t require write access.

Figure 2: Phase 1: Distributed architecture – Leader with replicas

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications8

This process is similar to (and a major

enhancement over) Synergex’s SQL replication

solution, where applications use I/O hooks to

replicate their ISAM data in an RDBMS. In the new

approach, the locks on ISAM files are maintained

separately on each node, which can significantly

reduce lock contention between nodes. Using

Kafka as an intermediary for managing data

updates ensures that the ISAM files on the

follower nodes are almost always up to date,

except for a brief period during data transit.

This approach ensures that data across nodes

remains consistent and highly available. This

method o�ers better scalability by decoupling

the data replication process from the RDBMS

server’s direct handling. By leveraging Kafka’s

robust messaging and queuing capabilities,

the system can handle larger volumes of data

changes more e�iciently, allowing the replication

process to scale as data volume grows.

Further, the system uses a Consul service for

configuration management and node role

coordination, e�ectively deciding which node

acts as the leader. This setup facilitates seamless

dynamic configuration adjustments and node

role transitions

Applications interact with ISAM files stored

locally on the disk. Whether the application

is running on a leader or a follower node, it

accesses these files directly, just as it would in a

non-distributed environment. The application

has no need to fetch data over a network or

through external servers using xfServer.

I/O hooks are implemented to intercept

file operations transparently. These hooks

capture write operations performed by the

application on the leader node and package

these changes, forwarding them to Kafka topics.

This process is invisible to the application, thus

maintaining transparency to the users. The

approach minimizes changes to the existing

application code, which is crucial for systems

with extensive codebases. Instead of rewriting

large portions of the application, I/O hooks

allow for a non-intrusive integration of new

data handling and replication mechanisms. This

method ensures that enhancements to data

handling and availability can be implemented

without disrupting the core functionality of

the application or requiring significant code

modifications.

Once updates are pushed to Kafka, they are

replicated across the system. Replication agents

on each node then replay these operations into

their respective local ISAM files. Applications

on these nodes, whether they are performing

read operations or accessing data in other ways,

interact with up-to-date ISAM files as if they were

interacting directly with a local database.

Application transparency

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications9

The second phase of setting up a distributed

application addresses coordination challenges

and includes a method to manage write

operations more e�iciently. Instead of directly

writing to ISAM files, the application creates a

command object for each write operation and

places it in a queue. This object encapsulates the

specific instructions for the operation. This more

structured approach centralizes the handling of

write operations.

Phase 2: Refactoring write operations

Figure 3. Distributed architecture – Refactoring write operations

The process described above is an

implementation of Change Data Capture (CDC),

a technique used to detect and capture changes

in a database, enabling real-time data updates

across systems. CDC provides powerful real-time

data processing capabilities.

This integration o�ers significant benefits to

legacy systems, which can be updated instantly

across platforms. By capturing changes directly

from the application, CDC minimizes the

performance impact on the source database.

Kafka’s scalable architecture e�iciently handles

large volumes of data changes, ensuring

data consistency by synchronizing changes

immediately. This reduces discrepancies,

improves scalability, and integrates legacy

systems into modern, event-driven architectures

without requiring a complete overhaul.

Change Data Capture

The queued commands are executed by

whichever node is the current leader. This

ensures that all write operations are centralized

and managed by a single, authoritative source at

any given time. With this separation of concerns,

the standard application can run on both leader

and follower nodes without modifications.

The regular operational flow of the application

remains una�ected by the underlying changes

in how write operations are handled. The

mechanism for executing write operations is

transparent to the users. They interact with the

application as usual, unaware of the behind-the-

scenes processing.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications10

In a distributed system, the node coordination

process primarily focuses on leadership

management. First, using distributed locks,

Consul elects a leader node from the available

nodes. If that leader later fails or becomes

unavailable, the system needs a protocol to

transition smoothly to another leader node.

When a new node is granted leadership, the first

steps are to ensure it has the latest data and has

fully synchronized with the replication queue.

This ensures the new leader has all necessary

information to handle requests accurately.

Once a follower node becomes the leader, it

starts processing new write operations. It also

handles pending operations, ensuring they are

executed and then replicating the updates back

to the Kafka topic. This creates a continuous loop

of data processing and replication across the

system.

Coordination in a distributed system

Distributed systems provide advantages to

blue-green deployments, where multiple active

versions are maintained in the same system. For

example, developers need the ability to migrate

data schemas live. Traditionally, adding a field to

an ISAM file involved taking the system o�line,

using a migration tool on a single node, and

then restarting the system with the new code to

utilize the new field. However, in a distributed

system with simultaneous versioning, these

data migrations occur live. I/O hooks can now

intercept read and write operations to perform

transformations that previously required o�line

scripts. Additionally, developers can execute

their migration scripts directly on the data local

to a node, enabling the support of multiple

schema versions concurrently.

Blue-green deployments

Figure 5. Coordinating leadership changes between nodes

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications11

This solution will likely require an increase in

hardware, primarily to enhance redundancy. If

an organization’s current on-prem data center

setup includes a backup node that’s rarely

used, it might now become part of the active

hardware pool. If additional hardware is needed,

these units might be smaller than traditional

setups because the distributed system design

allows for scaling across multiple, coordinated

nodes rather than relying on single, large-scale

hardware.

This approach not only makes the system more

modular and potentially reduces the scale

(and possibly the cost) of individual hardware

units, but it also simplifies backup processes.

Distributed systems can eliminate the need

for expensive, high-availability solutions like

storage area networks (SANs) traditionally used

in DBL applications for maximizing availability.

These systems o�en come with high costs due

to the need for expensive synchronous geo-

redundancy setups, such as those using dark

fiber links between data centers. In our model,

the reliance shi�s from costly SAN replication to

achieving availability through multiple nodes,

which reduces the dependency on a single point

of failure and expensive infrastructure.

The distributed nature of the application also

allows for less sensitivity to latency, providing

flexibility in managing latency without significant

investment in telecommunications equipment.

Moreover, the system’s design aims for high

availability with minimal downtime. For direct

applications accessed via RDP or SSH, users may

need to reconnect if their specific node fails, but

the overall system remains robust. The use of

APIs and web applications can further obscure

the disruption to end users, as the failover and

node replacement are managed seamlessly in

the background, enhancing user experience and

system reliability.

Hardware considerations

Harmony Core makes it easy for

Synergy developers to expose

application data and business logic via

RESTful web services APIs

Harmony Core

Learn More

Distributed Computing: Transforming DBL Applications

https://www.synergex.com/products-connectivity-open-source/

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications12

 Distributing the RCC

application with the Streaming

Integration Platform

CASE STUDY

The RCC Resort Management Solution (RCC) is a so�ware

application serving all aspects of the timeshare/resort

management industry. The application was originally

developed in the 1980s as a Unix solution by Resort Computer

Corp. At its peak, over 500 timeshare resorts worldwide ran on

RCC. Synergex purchased the application in 2010 with the goal

of updating the application to serve the current needs of our

clients and grow the client base.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications13

Initial state With the Streaming

Integration PlatformBefore implementing the Streaming Integration

Platform, the application had the following

characteristics:
The updated system includes the

following enhancements:

It was designed to function on both Linux and

Windows platforms.

It already supported semi-distributed functionality.

This architecture allowed each resort to operate its

own server, in addition to a central server located at

the home o�ice, enabling a two-node setup.

It used ISAM files to queue write operations. Within

the application, “engines” processed these queues

by pulling records from the ISAM files, executing the

necessary instructions, and then updating the ISAM

files locally on the disk.

It had an API built on Harmony Core that interfaced

with the engines. This API provided direct data

access through OData and a blend of Traditional

Bridge and native .NET functionalities, facilitating

both logical operations and straightforward data

access. (Traditional Bridge is a Harmony Core

technology that allows traditional Synergy external

subroutines and functions to be incorporated

into and exposed as part of a Harmony Core web

service.)

It was accessible via SSH on Linux and through RDP

on Windows.

It managed resource coordination using a

convention based on ISAM locks, which helped

control access and maintain data integrity.

It operated on .NET.

The entire system is containerized,

with all components consolidated

into manageable units.

All configuration management is

handled by Consul, eliminating

manual setup steps for new nodes

and automatically updating

configurations on existing nodes.

The traditional application is

accessible through a web browser.

Load balancing is enabled across

multiple nodes to improve

performance and reliability.

Existing code from all engines is

reused to maintain continuity and

leverage proven functionality.

Minimal changes were made to the

application, to preserve its core

functionality and reduce the risk of

introducing errors.

The transformation prioritized

maintaining a very low-latency

user experience to ensure that

performance improvements

were meaningful and would not

compromise user satisfaction.

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications14

We tested the new system by running the application on two nodes, one Windows and the

other Linux.

We monitored the system via four

windows, two showing the application

running on each node and two

showing log files from each node.

Transformation in action

We created a new reservation on Linux,

which happened to be our leader node.

This created several events, which we

viewed in our log files.

Agents on each node got the events and replicated

the changes in their ISAM files. We confirmed that

the new reservation made it to the follower node

(Windows) by viewing it in the RCC application there.

Creating a reservation uses multiple backend

engines, for example a booking engine and a

reservation engine. In our updated system, these

engines continue to do their normal work. The

existing business logic doesn’t know that we

changed how we get the data. Also, the existing

application code required minimal modification—

since the original architecture already incorporated

writing to queues for the engines, we could simply

replace the subroutines handling

these writes.

Learn more about RCC and how they

previously implemented Harmony

Core and RESTful web services

Read the Case Study

Distributed Computing: Transforming DBL Applications

https://www.synergex.com/wp-content/uploads/2022/12/LVR-Success-Story-1.pdf

©2024 Synergex - Synergex.com
Distributed Computing: Transforming DBL Applications15

Conclusion
Distributed computing is fast becoming an essential element of modern system

design, providing important advantages like scalability, reliability, resiliency, and

e�iciency. Synergex’s Streaming Integration Platform facilitates transforming DBL

applications to distributed systems by connecting ISAM DBMS to Kafka queues.

You can leverage your existing code to take advantage of the latest, most e�ective

technologies in a multi-phased approach.

Want to learn more?

For more information, contact Synergex at +1.916.635.7300 or

synergy@synergex.com.

Our Professional Services Group (PSG) can help

you evaluate whether a distributed architecture

is the right path for your application.

The Synergex Professional

Services Group

Learn about PSG

https://www.synergex.com/professional-services/

Synergex provides so�ware development tools, application integration technologies,

and expert consulting services to help enterprise application developers retain

their so�ware investment, keep up with advancing technologies, and bring their

applications into the future. For over 45 years, Synergex technologies have been

the foundation of applications that drive commerce around the world. Every day,

millions of users interact with these systems in e-commerce, global logistics,

manufacturing, healthcare, and other industries.

	Executive Summary
	What is a distributed system?
	Benefits
	Industry trends
	Introducing the Integration Platform
	Integration Platform advantages
	Integration with Apache Kafka
	Other third-party products
	Harmony Core support
	Implementing the Integration Platform solution
	Phase 1: SQL Connection Plus
	CDC with Kafka Streams
	Application transparency
	Phase 2: Final integration platform
	Coordination in a distributed system
	Blue-green deployments
	Hardware considerations
	Implementing the Integration Platform for RCC
	Initial state
	Target state
	Transformation in action
	Conclusion

